Search Constraints
« Previous |
41 - 42 of 42
|
Next »
Number of results to display per page
Search Results
-
- Description:
- Simulation tasks and numerical codes have become increasingly complex in the context of temporal and spatial upscaling for understanding and predicting subsurface rock mass mechanics, for example associated with radioactive waste disposal. Benchmark procedures based on laboratory datasets are required to verify the predictive capabilities of computational approaches. In this study, a high-quality laboratory dataset of conventional geomechanical experiments on granite was generated. Numerical simulations of the experiments were performed as proof-of-concept using COMSOL Multiphysics and RocScience RS to derive a benchmark procedure for numerical quality assurance that can be applied to computational approaches in the context of nuclear waste disposal and beyond. The laboratory schedule was specifically developed for the numerical simulation of time-dependent deformation characteristics in granite. Splitting tensile strength, uniaxial compressive strength, and triaxial compressive strength of carefully characterised specimens were investigated at different strain rates covering five orders of magnitude. Strength decreased with decreasing strain rate, and the presence of water decreased strength significantly. A significant contribution of end face friction in the experimental setup to the results of strength tests was verified and recommendations for preparational and experimental procedures in deformation experiments on granite were derived. Based on the laboratory dataset, 2D numerical simulations with RocScience RS2 successfully reproduced the effect of different lubricants to modify end face friction on strength, and COMSOL Multiphysics was able to reproduce the time-dependent deformation characteristics observed for granite. Using crack phase field damage modelling, COMSOL Multiphysics predicted triaxial compressive strength from uniaxial compressive strength by adjusting nothing but the boundary conditions. In both approaches, the adaptation of microstructural properties was required to successfully simulate the experimental findings pointing to a distinct need to further improve the understanding of microstructural processes causing the time-dependent deformation characteristics and to evaluate the potential for temporal upscaling to long-term processes exceeding those covered by laboratory experiments. The results of this study will significantly contribute to gaining more confidence in the predictive capabilities of numerical codes and identify code-specific parameters that are critical for successful prediction. , Please cite the following reference when using our dataset in your research: , Witte L.C., Asghari Chehreh H., Backers T., Duda M., Aydin M. & Parvin S., 2024. Digital appendix to 'Predictive capability of coupled rock behaviour – development of an experimentally based benchmark for numerical quality assurance (BeNuQuA)'. ReSeeD Research Data Repository, Research Data Services (RDS) of the Ruhr University Bochum., and Access to the dataset is available upon request. Please contact Prof. Dr. Tobias Backers ( tobias.backers@rub.de) or Dr. Mandy Duda ( mandy.duda@rub.de) for further information.
- Keyword:
- rocks, laboratory experiments, code comparison, Comsol Multiphysics, Rocscience, numerical simulation, benchmark, granite, time-dependence, rock deformation, and nuclear waste
- Subject:
- Comsol Multiphysics, rock deformation, nuclear waste, rocks, time-dependence, laboratory experiments, Rocscience, code comparison, benchmark, numerical simulation, and granite
- Publisher:
- Language:
- English
- Date Uploaded:
- 2025-02-20
- Date Modified:
- 2025-06-05
- License:
- Creative Commons BY-SA Attribution-ShareAlike 4.0 International
- Resource Type:
- Dataset
-
- Description:
- This dataset comprises self-reported questionnaire responses from 12,000 participants, capturing their conceptions, misconceptions, perceptions, and attitudes toward digital security. It also examines their familiarity with various digital security terms, experiences with cybercrime, and the protective measures participants employ to safeguard their online data. The survey, conducted in late 2021, includes responses from 1,000 participants in each of 12 countries: China, Germany, India, Israel, Italy, Mexico, Poland, Saudi Arabia, South Africa, Sweden, the UK, and the USA. , The dataset is provided in two files: , 1. "SurveyResponses_DigitalSecurityAroundTheWorld.csv": This file contains the complete survey responses from all 12,000 participants., 2. "DataMap_DigitalSecurityAroundTheWorld.pdf": This document includes each question and response option from the full questionnaire. It also maps the survey questions to their corresponding column names in the dataset, facilitating data interpretation., When using any part of our dataset for your own research:, please make sure to cite the following publications: , - Franziska Herbert, Steffen Becker, Leonie Schaewitz, Jonas Hielscher, Marvin Kowalewski, Angela Sasse, Yasemin Acar, and Markus Dürmuth. 2023. A World Full of Privacy and Security (Mis)conceptions? Findings of a Representative Survey in 12 Countries. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI '23). Association for Computing Machinery, New York, NY, USA, Article 582, 1–23. https://doi.org/10.1145/3544548.3581410 , and - Franziska Herbert, Collins W. Munyendo, Jonas Hielscher, Steffen Becker, Yixin Zou. 2025. Digital Security Perceptions and Practices Around the World: A WEIRD vs. Non-WEIRD Comparison. In Proceedings of the 34th USENIX Security Symposium (USENIX Security 25). USENIX Association, Philadelphia, PA, USA. (in press)
- Keyword:
- human-centered security, privacy, online survey, and cross-country comparison
- Publisher:
- Language:
- English
- Date Uploaded:
- 2025-01-24
- Date Modified:
- 2025-02-19
- License:
- Creative Commons BY Attribution 4.0 International
- Resource Type:
- Dataset